
 Red Teaming -
Process Hiving

Written by Rob Bone and Ben Turner

1 SUMMARY .1
2 THE PROBLEM .2
3 THE SOLUTION .2
4 MAPPING THE PE .3
5 LOADING DEPENDENCIES . .5
6 PATCHING ARGUMENTS .6
7 PREVENTING PROCESS EXIT .8
8 FIXING APIS .9

9 CAPTURING OUTPUT .11
10 CLEAN UP .12
11 DEMONSTRATION .13
12 KNOWN ISSUES & FURTHER WORK 14
13 DETECTIONS .15
14 CONCLUSION .15
REFERENCES .16

Contents

1

Real Red Team operations are by their very nature research-led; being able to simulate real and emerging
threats to the highest level is paramount if the engagement is going to provide real value to mature clients.

One common use case for offensive operations is the
requirement to run executable files or compiled code on
the target and in memory. Loading and running these
files in memory is not a new technique, malware such
as APT10 P8RAT is one recent example that runs an
executable in a new thread as part of its initial execution
(Kaspersky, 2020).

Running executables as secondary modules within a
Command & Control (C2) framework however is rarer,
particularly those that support arguments from the host
process.

This whitepaper introduces innovative techniques and
a must have tool for the Red Team’s arsenal. RunPE is
a .NET assembly that uses a technique called Process
Hiving to manually load an unmanaged executable
into memory along with all its dependencies, run that
executable with arguments passed at runtime, including
capturing any output, before cleaning up and restoring
memory to hide any trace that it was run.

Summary01

A number of C2 frameworks provide the capability to run .NET assemblies in memory by creating a .NET
runspace, loading the assembly, and then reflectively invoking a function. This allows those assemblies to be
run without the need for the file to touch disk on the compromised host, nor the need for a new process to be
spawned which provides less Indicators of Compromise (IoC) for defenders monitoring process trees.

The aim of this project is to develop a .NET assembly that provides a mechanism for running arbitrary
unmanaged executables in memory. It should allow arguments to be provided, load any libraries that are
required by the code, obtain any STDOUT and STDERR from the process execution, and not terminate the host
process once the execution of the loaded PE finishes.

2

However, far fewer C2 frameworks have any capability
for running unmanaged code in this way, and if they have
any capability at all it’s often by creating a new ‘sacrificial’
process to host the target. As mentioned, this can be a
strong IoC as it significantly increases the detectable
footprint of the implant on the victim.

Other modern techniques work around this problem
by creating object files that can be executed directly
in memory within an implant process, such as Cobalt
Strike’s Beacon Object Files (BOFs) (Cobalt Strike, n.d.).
This provides a way for operators to extend Cobalt
Strike’s functionality in a stealthy way, as the BOFs are
executed in the implant process, eliminating the need for
the sacrificial process.

This .NET assembly must be able to be run in the normal
way in C2 frameworks, such as by execute-assembly
(Cobalt Strike, 2018) in Cobalt Strike or run-exe in
PoshC2, in order to extend the functionality of those
frameworks.

Finally, as this is to all take place in an implant process,
any artefacts in memory should then be cleaned up by
zeroing out the memory and removing them or restoring
original values in order to better hide the activity.

We’re calling this technique of running multiple PEs from
within the same process ‘Process Hiving’ and the result
of this work is the .NET assembly RunPE. In essence this
technique:

These object files need to be custom-written in a specific
format however, forcing operators to re-implement
functionality for already-solved problems.

Finally, there are projects in .NET that manually map
Windows Portable Executables (PEs) into memory and
execute the entry point in the current process, such as
SafetyKatz (HarmJ0y, 2018). This provides the benefit
of being able to simply hand over a standalone, prebuilt
PE and run it in memory. However, at present these
don’t support passing arguments and when the target
PE finishes executing the process exits, forcing the use
of modified PEs with hard coded (or no) arguments
and no process termination if they are to be used in C2
frameworks without sacrificial processes.

• Receives a file path or base64 blob of a PE to run
• Manually maps that file into memory without using the

Windows Loader in the host process
• Loads any dependencies required by the target PE
• Patches memory to provide arguments to the target PE

when it is run
• Patches various API calls to allow the target PE to run

correctly
• Replaces the file descriptors in use to capture output
• Patches various API calls to prevent the host process

from exiting when the PE finishes executing
• Runs the target PE from within the host process, while

maintaining host process functionality
• Restores memory, unloads dependencies, removes

patches and cleans up artefacts in memory after
executing

The Problem

The Solution

02

03

43

Mapping the PE04
The first step is to map the desired executable into memory within our host process.

The starting point for the work was @subtee’s .NET PE
Loader utilised in GhostPack’s SafetyKatz (HarmJ0y,
2018). This .NET PE Loader already mapped a PE into
memory manually and invoked the entry point, however
as described above a few critical issues remained
preventing its use in an implant process. SafetyKatz uses
a ‘slightly modified’ version of Mimikatz as the target PE,
critically to not require arguments or exit the process
upon completion.

The first step then was to re-use as much of this work
as possible and rewrite it to suit our needs – no need to
reinvent the wheel when a lot of great work was already
done. We split out different parts of the loader to better
separate concerns and facilitate clean up. Starting in
PEMapper.cs, we first take the bytes of the target binary
(either passed in as a base64 blob or loaded directly from
disk) and allocate enough memory to hold it.

Then, iterating over the sections listed in the PE header we copy the bytes into memory at the respective Relative Virtual
Address (RVA), also retrieved from the file header. This mimics how the Windows Loader maps a PE into memory where
each section is mapped into memory at a relative address that is dictated by the PE header.

The relocation table then has to be updated. This table is
used when the image is not at its preferred image base,
such as when Address Space Layout Randomisation
(ASLR) is in use, and this is the case here as the image
is being manually loaded and the base address of
the allocation is determined by the Windows memory
manager.

The memory is initially allocated as PAGE_
READWRITE while being written to, then altered to the
appropriate memory protection value later on once
everything has been full patched in order to avoid
allocating unexpected PAGE_EXECUTE_READWRITE
pages which may trigger an EDR alert or in-memory
AV scanning. The expected memory protection value
is read from the section characteristics value in the
image section header for each section by bitwise
ANDing the value with the appropriate flag (Microsoft,
2021) and comparing the value to zero.

Once this is complete, the image has been
successfully loaded into memory.

The table contains blocks of ‘fixups’; locations of specific
locations in the PE that need updating when the image is
not loaded at its preferred base address.

To update this, the delta between the current base and the
preferred base is calculated, and then we iterate over the
relocation table updating each fixup in each block.

5

Loading Dependencies05
Few PEs run without dependencies and import functions from Dynamic Linked Libraries (DLLs)
that are presented on the filesystem.

In order to run the PE, any libraries that have not already been loaded as part of the current process need to be also
loaded so that the target PE can dynamically use them. Additionally, as the PE has been manually mapped the Import
Address Table (IAT) needs to be patched to set the virtual addresses of the loaded modules. This table is a jump table
that provides the mechanism by which the loaded PE can reference functions in DLLs that are loaded into memory at
random memory address, due to ASLR.

When the PE wants to execute an export in a DLL the code calls the relevant value in this table, which gets patched
by the Windows Loader to point to the address of the DLL when it gets loaded into memory. As we are not using the
Windows Loader, we need to perform this step ourselves manually.

In ImportResolver.cs the very first thing we do is store the list of the currently loaded modules so we can clean up any
newly loaded modules for the target PE once execution has completed without interfering with the current process.

The address of the Import Directory Table is then retrieved
from the PE header and iterated over, retrieving the
relative offset to the Import Address Table entry and the
DLL name of the dependency.

Then, for each DLL the imported functions are enumerated and LoadLibrary and GetProcAddress used to retrieve
the actual address of the function. The Import Address Table is then patched with this value and the iterator continues.
A null value for the function name indicates the end of the import list for that DLL, and a null value for the DLL name
indicates the end of the list of DLLs in the Import Directory Table.

As LoadLibrary only loads DLLs if they have not
already been mapped into the process and simply returns
a handle to the loaded DLL if it has, this will reuse any
loaded modules if they already exist in the host process
and load them using the standard Windows Loader if not.

Manually mapping dependencies, whether they are
already loaded or not, would be a much stealthier
approach as it would not make use of LoadLibrary and
GetProcAddress. Both of these API calls are often
monitored and using them returns handles to properly
loaded modules that may have been hooked by EDRs
or monitored by other software. There is scope for
improvement then, in this space on the roadmap.

Patching Arguments06
In ArgumentPatcher.cs steps are taken to allow arguments to be passed to the target PE by patching a number
of API calls and memory regions.

In a Windows process a pointer to the command line arguments is located in the Process Environment Block (PEB) and
can be retrieved directly or, more commonly, using the Windows API call GetCommandLine. Similarly, the current image
name is also stored in the PEB.

To start with, PEB is retrieved using NtQueryInformationProcess.

Then the CommandLine, Image, CommandLineLength and ImageLength locations are retrieved from the PEB.

The new arguments are then built and written to memory, along with the new image name. The PEB is then patched with
the pointers and lengths of these new values. The old values are retained for when we reset during the clean-up phase.

The GetCommandLine Windows API function is then patched to return a pointer to the new command line string. The
first step is to check if the current command line is a wide character string or not. To do this we copy the bytes into an
array and check if any bytes in the array are null bytes (with the exception of the null terminator). If there are null bytes
we assume it is a wide character string, if not then we assume a char string.

6

87

A patch is then created that simply returns the address of this string and the GetCommandLine function is patched
with these bytes.

Windows API calls use the __stdcall calling convention
with which integer values and memory addresses are
returned in the rax register for 64-bit programs (Microsoft,
2017). According to MSDN GetCommandLine returns
a pointer to the command-line string for the current
process (Microsoft, 2018), so this patch therefore simply
moves the value of the pointer to our new command line
string into rax and returns, the value being added to the
range dynamically at runtime.

Using this encoding we marshal our new command line string with the appropriate encoding and then note the correct
subsequent API call (GetCommandLineA or GetCommandLineW).

Preventing Process Exit07
As described earlier, another issue with running vanilla PEs in this way is that when they finish executing the PE
inevitably tries to exit the process, such as by calling TerminateProcess.

Similarly, as the RunPE process is .NET, the CLR
also tries to shut down once process termination is
initiated, so even if TerminateProcess is prevented
CorExitProcess will cause any .NET implant to exit.

To circumvent this a number of these API calls are
patched in ExitPatcher.cs in a similar way to
GetCommandLine above to instead jmp to ExitThread.
As the entry point of the target PE is to be run in a
new thread this means that once it has finished it will
gracefully exit the thread only, leaving the process and
CLR intact. MSDN states that ExitThread takes a single
DWORD value that is the exit code for the thread so this
value must also be passed to the function (Microsoft,
2018). The 64-bit __stdcall calling convention states that

An example of this patch if the ExitThread function was located at 0x1337133713371337 is below:

0: 48 c7 c1 00 00 00 00 mov rcx, 0x0 // Move 0 into rcx for exit code argument

7: 48 b8 37 13 37 13 37 movabs rax, 0x1337133713371337 // Move address of ExitThread into rax

e: 13 37 13

11: 50 push rax // Push rax onto stack and ret, so this value with be the ‘return address’

12: c3 ret

We can see this in x64dbg while RunPE is running, viewing the NtTerminateProcess function and noting it has been
patched to exit the thread instead.

the first integer or memory address argument is passed
in the RCX register, so the exit code of 0 is first moved
into this register (Microsoft, 2020).

Finally, the address of the ExitThread function is moved
into a register and that register is pushed onto the stack
before returning. This is an example of Return Oriented
Programming (ROP), as when the ret instruction is called
it expects the value at the top of the stack to be the
return address in the calling function. In this case, that
value is the start of ExitThread which in turn expects
the first and only argument to be in RCX, which it is. As
ExitThread will terminate the thread, execution never
returns back up the stack from this point so any stack
mangling goes unnoticed.

An example of this simple patch if the address of the new
string was 0x1337133713371337 would then be:

0: 48 b8 37 13 37 13 37 movabs rax, 0x1337133713371337

7: 13 37 13

a: c3 ret

As with other changes, the original bytes are cached in
order to be restored later.

Fixing APIs08
During testing several other API calls also required patching with new values in order for PEs to work. One example
is GetModuleHandle which, if called with a NULL parameter, returns a handle to the base of the main executable
(Microsoft, 2018). When a PE calls this function it is expecting to receive its base address, however, in this scenario,
the API call will in fact return the host process’ binary’s base address, which could cause the whole process to
crash, depending on how that address is then used.

However, GetModuleHandle could also be called with a non-NULL value, in which case the base address of a different
module will be returned.

GetModuleHandle is therefore hooked and execution jumps to a newly allocated area of memory that performs some
simple logic; returning the base address of the mapped PE if the argument is NULL and rerouting back to the original
GetModuleHandle function if not. As the first few bytes of GetModuleHandle get overwritten with a jump to our hook
these instructions must be executed in the hook before jumping back to the GetModuleHandle function, returning
execution to after the hook jump.

As with the previous API patches, these bytes
must be dynamically built in order to use the
runtime addresses of the hook location, the
GetModuleHandle function and the base address
of the target PE.

First, the hook function gets created:

GetModuleHandle then gets patched to jump to this
new function.

As an additional change,
ExtraEnvironmentPatcher.cs also updates the
PEB, replacing the base address with that of the target
PE so that if any programs retrieve this address from
the PEB directly then they get the expected value.

At this point, the target PE should be in a position to be able to run from within the host process by calling the entry
point of the PE directly. However, as the intended use case is to be able to use RunPE to execute PEs in memory from
with an implant, it is a requirement to be able to capture output from the program.

109

Capturing Output Clean Up09 10
Output is captured from the target process by replacing the handles to STDOUT and STDERR with handles to
anonymous pipes.

As Process Hiving includes running multiple processes from within one, long-running host process it is important
that any execution of these ‘sub’ processes includes full and proper clean up. This serves two purposes:

In FileDescriptorRedirector.cs pairs of
anonymous pipes are first created using CreatePipe:

• To restore any changed state and functionality in
order to ensure that the host process can continue
to operate normally.

• To remove any artefacts from memory that may
cause an alert if detected through techniques such
as in-memory scanning, or aid an investigator in
the event of a manual triage.

To achieve this, any code change made by RunPE is
stored during execution and restored once execution
is complete. This includes API hooks, changed values
in memory, file descriptors, loaded modules and
of course the mapped PE itself. In the case of any
particularly sensitive values, such as the command
line arguments and mapped PE, the memory region is
first zeroed out before it is freed.

STDOUT, STDIN and STDERR are then replaced using
SetStdHandle.

Just before the target PE entry point is invoked on a
new thread, an additional thread is first created that
will read from these pipes until they are closed. In this
way, the output is captured and can be returned from
RunPE.

The pipes are closed by RunPE after the target PE
has finished executing, ensuring that all output is
captured.

1211

Demonstration Known Issues & Further Work11 12
An example of RunPE running unchanged and up-to-date Mimikatz is below, alongside Procmon process activity
events for the process.

There are a number of known issues and caveats with this work in its current state which are detailed below.

Note that there are no sub-processes created,
and Mimikatz runs successfully with the provided
arguments.

Running a debug build provides more output and
allows us to verify that the artefacts are being
removed from memory and hooks removed, etc. We
can see below that after the clean-up has occurred
the ‘new’ DLLs loaded for Mimikatz have either
already been cleaned up by Mimikatz itself (the error
code 126) or are freed by RunPE and are now no
longer visible in the Modules tab of Process Hacker.

• RunPE only supports x64 bit native Windows PE files.

• During testing any modern PE compiled by the testers
has worked without issues, however issues remain
with a number of older Windows binaries such as
ipconfig.exe and icacls.exe. Further research is
presently ongoing into what specific characteristics of
these files cause issues.

• If the target PE spawns sub-processes itself then those
are not subject to Process Hiving and will be performed
in the normal fashion. It is up to the operator to
understand what the behaviour of the target PE is and
any other considerations that should be made.

• RunPE presently calls the entry point of the target PE
on a new thread and waits for that thread to finish, with
a timeout. If the timeout is reached or if the target PE
manipulates that thread, this is undefined behaviour.

• PEs compiled without ASLR support do not work
currently, such as by mingw.

Additionally, further work can be made on RunPE to
improve the stealth of the Process Hiving technique:

• Dependencies of the target PE can be mapped into
memory using the same PE loader as the target PE
itself and not using the standard Windows Loader.
This would bypass detections on API calls such as
LoadLibrary and GetProcAddress as well as any
hooks placed in those modules by defensive software.

• For any native API calls that remain, the use of syscalls
directly can be explored to achieve the same ends for
the same reasons as described above.

Similarly, the original code on the hooks such as
NtTerminateProcess has been restored, which we
can verify using a debugger such as x64dbg as below.

As during Red Team operations Mimikatz.exe is
unlikely to exist in the target environment, RunPE
also supports loading of binaries from base64 blobs
so that they can be passed with arguments down C2
channels. Long, triple dash switches are used in order
to avoid conflicts with any arguments to the target PE.

An example of this from a PoshC2 implant below
demonstrates the original use case. The implant host
process of netsh.exe loads and invokes the RunPE
.NET assembly which in turn loads and runs net.exe in
the host process with arguments. In this case net.exe
is passed as a base64 blob down C2.

1413

161615

At its core, Process Hiving is a fairly simple process. A PE is manually mapped into memory using existing
techniques and a number of changes are made to API calls and the environment so that when the entry point
of that PE is invoked it runs in the expected way.

We hope that this technique and the tool that implements
it will allow Red Teams to be able to quickly and easily
run native binaries from their implant processes without
having to deal with many of the pain points that plague
similar techniques that already exist.

The source code for RunPE is available at https://github.
com/nettitude/RunPE and any further work on the tool
can be found there.

Conclusion14

Detections13
For Blue Team members, the best way to prevent this technique is to prevent the attacker from reaching this stage
in the kill chain. Delivery and initial execution for example likely provide more options for detecting an attack than
process self-manipulation. However, a number of the actions taken by RunPE can be explored as detections.

• SetStdHandle is called six times per RunPE run,
once to set STDOUT, STDERR and STDIN to handles
to anonymous pipes and then again to reset them. A
cursory monitor of a number and range of processes
on the author’s own machine did not show any
invocations of this API call as part of standard use, so
this activity could potentially be used to detect RunPE.

• A number of APIs are hooked or modified and
then restored as part of every RunPE run such
as GetCommandLine, NtTerminateProcess,
CorExitProcess, RtlExitUserProcess,
GetModuleHandle and TerminateProcess.

Cobalt Strike. (2018, April 9). Cobalt Strike 3.11 – The snake that eats its tail. Retrieved from Cobalt Strike: https://blog.cobaltstrike.
com/2018/04/09/cobalt-strike-3-11-the-snake-that-eats-its-tail/

Cobalt Strike. (n.d.). Beacon Object Files. Retrieved from Cobalt Strike: https://cobaltstrike.com/help-beacon-object-files

HarmJ0y. (2018, July 24). GhostPack/SafetyKatz. Retrieved from GitHub: https://github.com/GhostPack/SafetyKatz

Kaspersky. (2020). APT10: Tracking down the stealth activity . GReAT Ideas Green tea edition. Retrieved from Kaspersky Daily.

Microsoft. (2017, October 10). __stdcall. Retrieved from MSDN: https://docs.microsoft.com/en-us/cpp/cpp/stdcall?view=msvc-160

Microsoft. (2018, May 12). ExitThread function. Retrieved from MSDN: https://docs.microsoft.com/en-us/windows/win32/api/
processthreadsapi/nf-processthreadsapi-exitthread

Microsoft. (2018, 05 12). GetCommandLineA function. Retrieved from MSDN: https://docs.microsoft.com/en-us/windows/win32/
api/processenv/nf-processenv-getcommandlinea

Microsoft. (2018, May 12). GetModuleHandleA function. Retrieved from MSDN: https://docs.microsoft.com/en-us/windows/win32/
api/libloaderapi/nf-libloaderapi-getmodulehandlea

Microsoft. (2020, June 07). x64 calling convention. Retrieved from MSDN: https://docs.microsoft.com/en-us/cpp/build/x64-calling-
convention?view=msvc-160

Microsoft. (2021, March 3). PE Format. Retrieved from MSDN: https://docs.microsoft.com/en-us/windows/win32/debug/pe-
format#section-flags

References

Continued modification of these Windows API calls in
memory is not likely to be common behaviour and a
potential avenue to detection.

• Similarly, the PEB is also continually modified as the
command line string and image name are updated with
every invocation of RunPE.

• While the source code can be obfuscated, any attempt
to load the default RunPE assembly into a .NET process
provides a strong opportunity for detection.

solutions@nettitude.com
www.nettitude.com

Follow Us

UK Head Office
Jephson Court, Tancred
Close, Leamington Spa,
CV31 3RZ

Americas
50 Broad Street,
Suite 403, New York,
NY 10004

Asia Pacific
1 Fusionopolis Place,
#09-01, Singapore,
138522

Europe
Leof. Siggrou 348
Kallithea, Athens, 176 74
+30 210 300 4935

