Detecting PoshC2 – Indicators of Compromise

As a counterpart to the release of PoshC2 version 6.0 we are providing a list of some of its Indicators of Compromise (IoCs), particularly as used out-of-the-box, as well as some other effective methods for detecting it in your environment.

We also introduce the new PoshC2 Detections GitHub repository at https://github.com/nettitude/PoshC2_IOCs that will be continually updated as development continues, in order to assist blue teams with detecting PoshC2, particularly when used by less sophisticated attackers that do not alter or configure it to change the default IoCs. We encourage the community to contribute to and help update and improve this repository.

It is worth noting that PoshC2 is open source, so while these are IoCs for PoshC2 if used it its default state, ultimately it can be altered either through configuration or by changing the source code itself. The default configuration is subject to change, however where possible the location of that value is pointed out to the reader in order to allow these values to be monitored and updated, in addition to providing the GitHub repository.

Communications

One way to detect PoshC2 is to focus on the communications. Compromised hosts have to communicate with the C2 server somehow in order to pick up tasks and return task output. This is unavoidable and PoshC2 can currently only do this through the use of HTTP(S) requests.

That isn’t to say this this makes it easy to detect; a huge amount of HTTP traffic is present in most environments and the flexibility of the protocol allows for traffic to be hidden and routed through legitimate websites using techniques such as Domain Fronting and reverse proxies.

An example of HTTP comms when domain fronting.

An example of HTTP comms when domain fronting.

Something very helpful for catching C2 communications is SSL Inspection. By being able to inspect SSL traffic leaving the perimeter, the contents of that traffic can be checked and statistics acquired for detecting C2 communications. Without this, network defenders are largely blind, particularly against domain fronted communications which travel via legitimate third-party websites.

If SSL Inspection is implemented then the HTTP traffic can be viewed, and while PoshC2 encrypts the contents of the HTTP bodies, the HTTP URLs and headers can still be viewed.

URLs

PoshC2 has two different ways of generating URLs to use for communications. Operators can either use a static list of URLs or provide a wordlist from which random URLs will be generated, and these files are stored at resources/urls.txt and resources/wordlist.txt respectively, with the static URL list being the default option. These URLs are then loaded into the database when the project is first created, and a random URL is chosen by each implant each time it beacons. The default URL list is below:

While these URLs were originally copied from legitimate requests, if you see several of them being repeated to a site, particularly if they do not seem relevant to that site and if the response does not make sense, then it could be PoshC2 beacon traffic.

HTTP Responses

PoshC2 also has static HTML responses that it responds with. The default is six HTTP 200 responses and one 404 response. These are stored in files at resources/responses/ and also loaded into the database when the server is first created. The server responds with a random 200 response to POST requests that do not error or require a specific response, and with the single 404 response to all unexpected URLs or when the C2 server errors. Other responses return context relevant data, such as tasks, implant code and so on.

This static HTML file then at resources/responses/404_response.html is an IoC and if returned from a webserver that you are investigating is suggestive of PoshC2. Similarly, the 200_response* files in the same directory are IoCs if returned by POST requests.

Note however, that it is recommended that operators change these files before creating a PoshC2 project, as is the use of a C2 proxy, so as with the other indicators the absence of this particular response is not unexpected for a PoshC2 installation.

SSL Certificate

PoshC2 by default creates a self-signed certificate for its HTTP server, the values for which are stored in poshc2/server/Config.py file. These values are not in the ‘normal’ configuration file config.yml and are less documented and are therefore harder to change.

An experienced operator will not expose their C2 server to the internet, but will instead use a proxy server with a valid certificate and filter firewall traffic to the C2 server that is not from that proxy, however if these steps are not taken and a certificate with the below values is presented then it is another strong indicator that PoshC2 is in use, likely by less sophisticated adversaries.

The issuer data can be viewed using Chrome and the default values suggest this is a PoshC2 server.

The issuer data can be viewed using Chrome and the default values suggest this is a PoshC2 server.

JA3 Signatures

Another method for signaturing C2 traffic without SSL Inspection is to fingerprint the Client Hello packet that initialises the TCP connection. The specific bytes that make up the packet are dependent upon the type of connection being formed and the underlying packages and methods used to do so.

As these packets are sent before encryption has been established they are cleartext and can be intercepted and read. It turns out that the packet contents are quite unique and can be fingerprinted. Salesforce have an excellent blog post on JA3 fingerprinting, but essentially the details are extracted from the packets that make up this TCP handshake and hashed to create a quick and easy signature, that can be used to identify not only that PoshC2 is in use, but also the specific implant type.

The current Windows 10 PoshC2 signatures are below:

PowerShell: c12f54a3f91dc7bafd92cb59fe009a35

Sharp: fc54e0d16d9764783542f0146a98b300

JA3 fingerprinting has been incorporated into security products such as Splunk and Darktrace to provide quick and easy identification of C2 traffic, and can be utilised with these fingerprints. These fingerprints are available and will be maintained in the PoshC2 Detections GitHub repository.

Telemetry

Another mechanism for detecting C2 traffic, with or without SSL Inspection, is through the use of telemetry.

PoshC2’s default values for beacon time and jitter in the config.yml file are 5 seconds and a 20% jitter, as can be seen below, which is both a fast beacon rate and a small jitter, making it relatively easy to detect using this method.

With these values the implants are going to beacon every 4-6 seconds by default, with an average of 5 seconds.

After capturing some traffic, filtering by the C2 server host and only checking TLS Client Hello packets, we can see that the TLS connection is created roughly every five seconds, confirming what we expect.

We can see the difference between each session initialisation is between 4 and 6 seconds.

We can see the difference between each session initialisation is between 4 and 6 seconds.

By exploring this small sample of data, we can determine that the average time between the requests is 5.05 seconds, with a standard deviation of 0.81 or 16%, close to the 5 second beacon with the 20% jitter we expect from PoshC2’s defaults.

Security products that can provide telemetry data, e.g. Splunk can be used to detect C2 traffic in this way by checking for repetitive beacons at a relatively fixed frequency, whether it’s at the above defaults for PoshC2 or at any frequency, given that it is configurable.

PowerShell Implant

PoshC2 has three implant types; PowerShell, C#, and Python, with the latter being a lightweight implant type mostly intended for compromising *nix hosts.

The PowerShell Implant runs by loading System.Management.Automation.dll, the engine behind PowerShell.exe, into the desired process and executing PowerShell commands directly using this DLL.

The PowerShell implant supports full PowerShell execution from any process (here netsh.exe) by loading System.Management.Automation.dll.

The PowerShell implant supports full PowerShell execution from any process (here netsh.exe) by loading System.Management.Automation.dll.

While this does not utilise PowerShell.exe, bypassing many restrictions and controls, it is still subject to PowerShell specific constraints such as Constrained Language mode and ScriptBlock logging. The latter, in particular, can be used to detect PoshC2 and any other malicious PowerShell commands, whether via PowerShell.exe or otherwise.

Note, however, that ScriptBlock logging was only enabled in PowerShell v5.0 and above, so if PowerShell v2.0 is available on the target then a downgrade attack can be performed and PowerShell 2.0 used, bypassing Constrained Language mode, ScriptBlock logging, AMSI and other controls added in v5.0.

PS Logging

Enabling ScriptBlock logging and Transcript Logging for PowerShell allows logging of processes running PowerShell commands.

There are multiple IoCs here, not least that the Host Application is not PowerShell.exe, as should be expected, but instead netsh.exe.

PowerShell transcripts provide valuable information. Alerting on Host Applications that are not PowerShell.exe is a good way to find PowerShell implants from any C2 framework.

PowerShell transcripts provide valuable information. Alerting on Host Applications that are not PowerShell.exe is a good way to find PowerShell implants from any C2 framework.

Similarly in the Event Viewer for ScriptBlock logging:

PowerShell ScriptBlock logging can reveal a wealth of information, here including the beacon URLs for PoshC2 and again netsh.exe as a host process.

PowerShell ScriptBlock logging can reveal a wealth of information, here including the beacon URLs for PoshC2 and again netsh.exe as a host process.

This also includes the ‘command line’ of the ScriptBlock being executed, which includes the beacon URLs from which a random element is being chosen, therefore listing all the C2 URLs that are in use by this implant.

Aside from the wealth of information ScriptBlock logging provides for any threat hunter, an event command line specific to PoshC2 that can be used to identify the PowerShell implant is below:

The $ServerClean variable is specific to PoshC2 and a clear IoC.

The $ServerClean variable is specific to PoshC2 and a clear IoC.

CommandLine= $ServerClean = Get-Random $ServerURLS

This ScriptBlock is part of the beaconing process and will be repeated frequently in the Event Viewer making it easy to identify.

System.Management.Automation.dll

As mentioned earlier, the PowerShell implant does not function by invoking PowerShell.exe, but instead by loading System.Management.Automation.dll into the implant process.

This means that this is an IoC, and if we find a process that should not have this DLL loaded, particularly if it is an unmanaged code binary (so not .NET) then it is highly likely that this is a process that has been injected into by a PowerShell implant, PoshC2 or otherwise.

System.Management.Automation.dll, the engine behind PowerShell, is a .NET library.

System.Management.Automation.dll, the engine behind PowerShell, is a .NET library.

netsh.exe is a C++ binary and should not be loading .NET libraries.

netsh.exe is a C++ binary and should not be loading .NET libraries.

We can see this DLL loaded into an implant process using Process Hacker:

System.Management.Automation.dll loaded into netsh.exe.

System.Management.Automation.dll loaded into netsh.exe.

Similarly we can view the .NET Assemblies in the process:

We can view the .NET Assemblies in the netsh.exe process and see PowerShell is loaded.

We can view the .NET Assemblies in the netsh.exe process and see PowerShell is loaded.

This tab shouldn’t even be present for a genuine netsh.exe process as it is unmanaged code!

The module is not loaded in a genuine netsh process and the .NET tabs are not available.

The module is not loaded in a genuine netsh process and the .NET tabs are not available.

An operator can be smarter about their migration by injecting into .NET processes, however it is still unlikely that a legitimate process (that isn’t PowerShell.exe) would load System.Management.Automation.dll, so this is a great IoC to look out for in your environment.

This can be implemented at scale by searching for loaded modules in an EDR product, for example in CarbonBlack with a query of:

modload:System.Management.Automation* AND -process_name:powershell.exe AND process_name:powershell_ise.exe

This searches for process with System.Management.Automation.dll or System.Management.Automation.ni.dll (the Native Image version) loaded into a process when that process is not PowerShell.exe or PowerShell_ISE.exe. Other legitimate exclusions may need to be added for your particular environment.

Here we can see various processes that have loaded System.Management.Automation.dll into memory that are likely implants.

Here we can see various processes that have loaded System.Management.Automation.dll into memory that are likely implants.

C# Implant

The C# or Sharp implant is PoshC2’s ‘next gen’ implant, written (unsurprisingly) in C#. The key difference from a detection perspective is that this implant does not require loading System.Management.Automation.dll in order to function. Most of the functionality of the C# implant is custom-written and while it can load System.Management.Automation.dll in order to execute PowerShell, this is an operator decision and is by no means necessary.

A similar process to the above can be applied, but is a little harder to implement. .NET processes load the mscoree.dll library which is the core library behind the .NET CLR (Command Language Runtime), so again any unmanaged code processes that are loading this library could have been migrated into. The issue here is finding these processes, as it’s not as simple as searching for just ‘module loaded and process name is not powershell.exe’.

A blacklist can be created of common target processes that are unmanaged, always available and should not be loading the .NET runtime, and these can be monitored, as well as noting this during manual triage.

Implant loads mscoree.dll if it is not already present in the process – another IoC if the process is supposed to be unmanaged.

A C# implant loads mscoree.dll if it is not already present in the process – another IoC if the process is supposed to be unmanaged.

Note that the PowerShell implant will also load this library as it is also a .NET process, however the presence of System.Management.Automation.dll marks it as an implant that can run PowerShell.

The C# implant has the ability to load compiled binaries into memory over C2 and run them, which is extremely powerful. There are indicators of this however, as a new virtual runspace is created for each module and their namespace is listed in the AppDomain to which they are loaded.

Viewing the .NET Assemblies in Process Explorer or Process Hacker for example then reveals what modules have been run.

In the C# implant loaded modules have their namespace visible in the AppDomain, making it clear what has been loaded into the implant.

In the C# implant loaded modules have their namespace visible in the AppDomain, making it clear what has been loaded into the implant.

Above we can see the Core and dropper_cs modules that make up the core functionality of the C# implant, as well as some native modules from Microsoft that are required to run. These modules will always be present in the PoshC2 C# implant and are a clear IoC. We also see Seatbelt and SharpUp, two common C# offensive modules from SpectreOps, and we can surmise that they have been on the target.

In General

Migration

We have used netsh.exe as the example implant process in this post and that is for a good reason. The default migration process for PoshC2 in the C# and PowerShell implants is C:\Windows\System32\netsh.exe, so when the migrate or inject-shellcode commands are used and a specific process ID or name is not set, then a new netsh.exe process is spawned and migrated into.

This itself is a common IoC for PoshC2, as netsh.exe is not typically frequently run in environments, and certainly not on most end user’s hosts. Therefore, if there is a sudden uptick in the number of these processes being run in the environment or if several are running on a host then it could be worth investigating.

Persistence

PoshC2 has three quick persistence commands available to the PowerShell implant. Each of these installs a PowerShell.exe one liner payload to the registry in the key at HKCU\Software\Microsoft\Windows\CurrentVersion\themes with a name Wallpaper777, Wallpaper555 or Wallpaper666, depending on the command being run.

This payload is then triggered by either:

  • A registry key at HKCU\Software\Microsoft\Windows\CurrentVersion\run with the name IEUpdate
  • A Scheduled Task, also with the name IEUpdate
  • A shortcut file placed at %APPDATA%\Microsoft\Windows\Start Menu\Programs\Startup\IEUpdate.lnk

All of these can be alerted upon and used to determine that the adversary using PoshC2, in addition to alerting on the invocation of PowerShell.exe with encoded parameters, and so on.

Binary payloads

Some of the more common payloads that are dropped on targets are the PoshC2 executables and DLLs that can be run using rundll32.exe.

For the DLLs, there are different versions for PowerShell and Sharp implants across versions 2 and 4 of PowerShell and x86 and x64 bit architectures, however all the DLLs have a single entry-point common to all: VoidFunc.

All the DLL payloads have the same single entry point of VoidFunc.

All the DLL payloads have the same single entry point of VoidFunc.

This entry-point is hard-coded in PoshC2 and cannot be changed without hacking the compiled binary itself.

For the common executable and DLL payloads we’ve also added Yara rules for detecting them. These are based on signaturable parts of the binaries that will not change across different installs of PoshC2, for example with different comms options. These are also available in the new PoshC2 Detections GitHub repository.

In Summary

We’ve looked at a few different detections for catching PoshC2 when used out-of-the-box. Using these in your environment will help protect against the less sophisticated users of PoshC2 in addition to further understanding how the tool works.

Any new detections or amendments can be added to the https://github.com/nettitude/PoshC2_IOCs repository and we encourage the community to add their own detections or rules and configurations for other security tools to help build a centralised data store for everyone.

Introducing PoshC2 v6.0

We are pleased to release the latest version of PoshC2 – v6.0. Version 6.0 includes a number of significant and exciting features, in addition to the usual plethora of bug fixes and small improvements. In this blog post, we take a look at some of the more significant changes and feature rich enhancements to make it easier for operators.

Download PoshC2 v6.0

You can download PoshC2 v6.0 from GitHub:

github GitHub: https://github.com/nettitude/PoshC2

Postgres Support

Reporting and auditing actions is an essential part of any C2 framework. As operators, we need to reliably determine all actions that have performed, in case there’s an incident as well as for accurate reporting. PoshC2 normally uses SQLite databases in the project directory to store its data, but we found that for large projects or a very high number of implants the performance of this database can become an issue and start to slow down.

For this reason, we’ve added support for Postgres databases, allowing teams to point their PoshC2 install at a Postgres instance and have the project data stored in a performant database on a separate server, if desired.

Using Postgres in PoshC2 is easy, simply change the DatabaseType value in the config.yml from SQLite to Postgres, and set the PostgresConnectionString as follows. The only other thing to note is you must create the database manually before adding the connection string.

That’s all there is to it!

Daisy Chaining

Daisy chaining implants has been an incredible feature of PoshC2 for some time now. The ability to have one implant beacon to another existing implant allows operators to compromise environments that can’t reach the Internet, by having communications route through an active implant that can. These implants can be daisy-chained to an arbitrary length which is extremely useful and powerful, but sometimes setting up daisy-chaining felt a little arcane, and if you didn’t make the right sacrifice to the right deity at the right time it may not work and troubleshooting the issue was not the easiest.

To help with this, we’ve added a wizard. Simply run startdaisy from the implant you want to use as the daisy server and it will guide the operator through the different options and situations before starting the daisy server on the current implant, and generate new daisy payloads that can be used to connect to this instance.

Once the daisy implant has been obtained, the operator can simply run startdaisy on that implant if they want to go deeper, or just use the implant as they would normally if one layer pivoting is all that’s required.

It should be noted that binding to a non-localhost IP address requires elevation, but daisy-chaining can still be used on the localhost without elevation. This is useful for elevation of privilege attacks, for example, creating implants as other users that cannot or should not have traffic leaving the environment, such as SYSTEM implants.

Dynamic Code Execution

Most red teams need the ability to quickly adapt to situations, to take advantage of fleeting opportunities or tackle difficult problems innovatively and creatively.

To help with this, we’ve added a quick and easy way of being able to write and run code down on a C# implant. PoshC2’s ‘Dynamic Code’ feature creates a DynamicCode.cs file in the project payloads directory. This file can then be edited at will in your editor of choice and run in the implant instantly.

Once done, saving it and running dynamic-code from a C# implant will compile this code and execute it in memory, on the target, on the fly.

This should enable teams to prototype and run their own code snippets or C# scripts quickly, allowing them to improvise, adapt and overcome obstacles they encounter.

AMSI Bypass

We’ve also updated the AMSI bypass for C# implant as well as help obfuscate the initial PowerShell cradle, which may help when fighting off Windows Defender. There were recently a few good blog articles from the security community that have helped us with this, as follows:

@_RastaMouse also has a GitHub repository that has the AMSI ScanBufferBypass that is leveraged in the C# implant shellcode, which evades the System.Reflection.Assembly.Load methods. Hopefully this means you can have more success on engagements rather than fighting with Windows Defender in order to help improve your client’s security posture.

Sharp PowerShell

Another significant change is the addition of PowerShell execution in the C# implant.

By using the sharpps command, operators can execute PowerShell in memory on the target from a C# implant, effectively adding the full power of PowerShell and the PowerShell implant to the C# implant. Similarly, modules can be loaded using the pslo (PowerShell loadmodule) command.

#OpSec Warning: Note that while PowerShell.exe is never touched or used, this will load the System.Management.Automation.dll into memory for the implant process when a sharpps or pslo command is first run.

SharpSploit integration

SharpSploit is a fantastic resource and has been included with PoshC2’s modules for some time now, but usage had been quite manual through the run-dll command.

We have started to integrate SharpSploit into PoshC2 more in order to leverage this tool more easily, starting with its Mimikatz commands:

We will continue to expand in this area over the next few months, so watch this space.

Indicators of Compromise

A key consideration when using a C2 framework is the Indicators of Compromise (IoCs) it has, and how well known they are.

Many of PoshC2’s IoCs are well fingerprinted, but can be altered in the config.yml file, such as the UserAgent string, default migration process, server header and more.

Previously, the HTTP responses that were returned by the server were simple inline pages in the configuration file, making it difficult to alter these to reflect real HTML pages. These have now been pulled out into standalone files in resources/responses folder so they can be easily edited.

A file is randomly selected and used as a response for HTML requests.

Searching history

PoshC2 already allows interactive command searching similar to bash using the Ctrl-R key combination, but a much requested feature was the ability to search through the command history in a similar way to the searchhelp command, which returns a list based off a regex search.

A searchhistory command has now been added which does exactly this, allowing operators to find all relevant commands, helpful both on engagements and when reporting, or even updating your notes with the cool commands you used during a live engagement.

C# Portscanner

Rob Maslen’s (@rbmaslen) PortScanner module has been added to PoshC2 and integrated into the C# implant so we can now fully utilize this in engagements where the PowerShell implant may get detected.

This fast and effective port scanner is loaded and run in memory by the C# implant and can be executed as shown below. It will also show closed ports for when you may need to tunnel through the network using already pre-approved ports on the firewall.

fpc script improvements

The fpc (Find PoshC2 Command) script is installed by PoshC2 to help with reporting and logging. When run from the command line, it allows users to search the PoshC2 database for commands or command output containing certain keywords. Rich Hicks (@Console) has significantly enhanced this script by improving its output to include the user and timestamp that run the particular command, in addition to adding a new filter for the taskId.

This script has also been updated to add support for Postgres.

RedELK Support

Working with @OutflankNL we’ve helped add support for PoshC2 to their awesome RedELK tool. This Red Team SIEM provides phenomenal oversight and insight into the actions being performed both by the Red Team and by the Blue Team when investigating an incident caused by that C2 instance, alerting the Red Team that they have been compromised. For more information, see the RedELK page here: https://github.com/outflanknl/RedELK.

Download PoshC2 v6.0

You can download PoshC2 v6.0 from GitHub:

github GitHub: https://github.com/nettitude/PoshC2

Roadmap

We still have a lot of planned improvements for PoshC2. Some of the prioritised changes are below:

  • Refresh the documentation.
  • Continue improving the ease of configuration for PoshC2’s IoCs (Indicators of Compromise), such as the HTTP responses and URLs used.
  • Provide the community with increased detections for PoshC2’s default IoCs, such as behavioural IoCs, yara rules and so on.
  • Continue refactoring PoshC2 for ease of development and testing.
  • Link pre-compiled third-party modules to their respective repositories for credit, updating, investigation etc.
  • Move to ISO standard date formats (yyyy-MM-dd).
  • Add an (optional) embedded RedELK Red Team SIEM to PoshC2’s C2 server.
  • Update Nettitude’s Red Team Training Course to cover in detail advanced usage of PoshC2 and knowledge of its IoCs, including altering core behavioural and static IoCs.
  • Add a python3 dropper.

Other Updates

A large number of other updates and fixes have been added in this version, some of which are briefly summarised below. For updates and tips check out @nettitude_labs, @benpturner and @m0rv4i on Twitter.

  • Updated SharpHound to the latest version 3.0.4
  • Kali Linux is the supported Operating System of choice now, with the Dockerfile building from the base Kali rolling image.
  • Clockwork SMS support has been retired and Pushover support enhanced, with the ability to set the API keys from the Implant Handler.
  • The Implant Handler display has been altered slightly, with labels on the right and displayed in blue.
  • Modules are now no longer loaded from the modules directory if a full path is specified to the loadmodule command.
  • The C# dropper now explicitly states the format it expects numbers, such as jitter, to avoid formatting issues when implants are running in other locales.
  • Beacon times will only be updated in the UI and server side when a beacon successfully accepts the beacon update task.
  • Implants will now retry up to five times to POST task data back if the request fails.
  • Kevin-Robertson’s Powermad module added (Thanks to Roxana Kovaci (@rkovaci)).
  • Install Script now checks it is running as root and exits if now with a user friendly message (Thanks to @jaredstroud).
  • Add m0rv4i’s SharpCookieMonster module.
  • Added updated PowerUpSQL from @NetSPI and new SweetPotato.exe module from @CCob
  • Added a sharp command safety check in the PS implant to catch commands that are likely for the C# implant and prompt for confirmation.
  • Update Rubeus module (Thanks to Tom MacDonald (@BaffledJimmy))
  • Updated the SharpHound3 help for increased operational security and stealth (Thanks to Ross Bingham (@PwnDexter))
  • Added ability to auto-hide implants that have not beaconed in for over 30 beacons with the –a option to the implant handler.
  • Added a static warning to the top of the ImplantHandler in red when the Kill date is less than 7 days away (thanks to @Felix).
  • Fixed: Encryption of special characters in commands could silently fail, particularly critical when entering a password with a special character in it.
  • Fixed: Generated HTML reports being truncated
  • Fixed: Various Upload and Download-file issues. (Thanks to @clhefton and @chppppp)
  • Fixed: Missing mono assemblies for installing on Ubuntu
  • Fixed: startanotherimplant-keepfile command not working in Python implant
  • Fixed: SharpSocks support via Domain Fronted URLs.
  • Fixed: Mimikatz credential parsing for creds command.
  • Fixed: Python2 dropper didn’t work in Python versions before 2.7.0 (Thanks to @RustyBower).
  • Fixed: PowerShell implants install-servicelevel-persistence (Thanks to @developerbart)
  • Fixed: Typo in backup folder name when starting PoshC2 with a different configuration (Thanks to @er28-0652).
  • Fixed: Many, many issues with the PoshC2.psm1 PowerShell module for PoshC2 on Windows via Docker (Thanks to @justin-p).
  • Fixed: Various SharpSocks issues (Thanks to Roxana Kovaci (@rkovaci)).
  • Fixed: Kill date format handling inconsistent across locales (Thanks to @KidneyThief).
  • Fixed: Python dropper.sh now explicitly uses python2 (Thanks to @clhefton).

Introducing PoshC2 v5.0

PoshC2 v5.0 is here and there are significant changes and improvements that we’re very excited to reveal!  There’s been a move to Python3, much improved documentation, significant functionality and quality of life improvements, and more.  Read on for a detailed description of it all!

Repositories

We have had a bit of a change around with repository names, as described here.

This brings us back to PoshC2 being the latest and greatest repository, and PoshC2_old being the obsolete repository.

Documentation

The documentation for PoshC2 has been completely re-written and updated, with emphasis on red team trade-craft when using PoshC2 and on extending and customising it to suit any situation or environment.

It will still be updated regularly, but there will be less focus on what all the different techniques are, and more on how to use PoshC2 itself. Check it out at https://poshc2.readthedocs.io.

Python3

PoshC2 has been completely updated to use Python3. With Python2 becoming End-of-Life in January 2020, it was quite an important change to make.

Posh Commands

Efforts have been made to abstract the potentially difficult nuances of setting up and using PoshC2 away from the user.  Remember having to change into the PoshC2 directory, setup and use a Python virtual environment, to avoid dependency version clashes with the rest of your system?  That’s a thing of the past.

The install script now installs a number of posh-* commands to your /usr/bin directory, before setting up the virtual environment ahead of time. These scripts then encapsulate the use of that environment for the user, allowing PoshC2 to be run and configured from any directory, and it will seamlessly use the virtual environment and other configurations behind the scenes.

For example, PoshC2 can be configured from any directory using your editor of choice by issuing:

posh-config

It can then be installed and run as a service simply by executing:

posh-service

Conversely so it can be stopped using:

posh-stop-service

The Implant-Handler can now be started using posh with a username which is used for logging purposes:

posh u crashoverride

…and you’re good to go.

Use of these scripts is recommended, as any further logic will also go into them and we will work to ensure that PoshC2 works seamlessly when they are used, while other techniques may not be maintained.

Prompt

PoshC2 now has an intelligent new prompt that can aid users when performing red teaming!

https://poshc2.readthedocs.io/en/latest/_images/autocompletions.png

This prompt has context-sensitive auto-completions, intelligently suggesting commands based on the current prompt, such as PowerShell commands in a PowerShell prompt and so on. A unique command history is stored per context, so you won’t have to scroll back through PowerShell commands on a C# implant.

https://poshc2.readthedocs.io/en/latest/_images/autosuggestions.png

In addition to this, the prompt features fish-shell-like auto-suggestions in dark grey text based on commands from that prompt’s history, so if you want to repeat or edit log commands you can complete the suggestion by pressing the right-arrow key or ctrl+e.

Combined with the help and searchhelp commands, we hope that this will allow users of PoshC2 to quickly explore PoshC2s functionality and enable veteran users efficiency and speed of operation for those crucial engagements.

SharpSocks

SharpSocks has undergone some significant improvements and integration into PoshC2. It started out as a standalone cmdlet that can be initiated from any PS session, but we have now fully integrated this so the users can be in any implant and type sharpsocks to get this going. A full separate blog has been written with all the changes for SharpSocks and can be found here:

Introducing SharpSocks v2.0

New Payloads

Several new payloads have been added out-of-the-box, including a DotNet2JS payload using James Forshaw’s DotNet2JScript technique, and a new C# payload for PowerShell Implants.

Sharp Implant Improvements

AMSI Bypass

.NET 4.8 introduced Antimalware scanning for all assemblies, including those loaded using Assembly.Load(byte[] bytes), which previously went unchecked and is used by our PowerShell-less C# implant to load C# executables and run them in memory.

This release features a new bypass-amsi command for the C# implant which will patch AMSI in memory and allow flagged modules to be loaded and executed.

Aliases

We fully appreciate that nobody has time to type out long commands over and over. To that end, we’ve streamlined the run-exe commands for the C# Implant. Now, instead of run-exe Seatbelt.Program Seatbelt all it’s just seatbelt all.

We’ve added aliases for all our favourite commands, but you can add your own in Alias.py. See the documentation for more details.

Lateral Movement Methods

In addition to integrating SharpSocks, we’ve integrated PBind, another great tool written by Doug McLeod. This is now full integrated into PoshC2 and users can type invoke-wmijspbindpayload with the relevant arguments to try and attempt execution on another endpoint using SMB named pipes. The default SMB named pipe for PoshC2 is jaccdpqnvbrrxlaf.

invoke-wmijspbindpayload -target  -domain  -user  -pass ''

In addition to the lateral movement command, PoshC2 will automatically create several payloads that are named PBind payloads. These, like the normal payloads, can be executed against a remote host in whichever technique you prefer to use; dcom, wmi, psexec, etc.

Once you have initiated the payload on a remote host, it will automatically open an SMB named pipe ready for connection. You must know the secret key, the encryption key and the pipe name to communicate, but we already have you covered for this as it tells you what commands to run to interact with the PBind implant:

If you want any other information on PBind, a previous blog covers the techniques in more details and the comms methods including a diagram.

https://labs.nettitude.com/blog/extending-c2-lateral-movement-invoke-pbind/

FPC script

Amongst the various scripts that are added to /usr/bin is the fpc (Find PoshC2 Command) script, added to aid in reporting. This script allows you to search for PoshC2 commands, filtering on keywords in the command, the command output and by user.

Credential management

We’ve improved the credential management in PoshC2, and now when you run Mimikatz’s logonpasswords, the credentials will automatically be parsed and stored in the database, and can be displayed or manipulated using the creds command.

Remainder

There’s also a myriad other improvements such as to logging, tracking file hashes on upload, UX improvements, internal modularisation and refactoring and module updates, with a lot more in the pipeline to come. Stay tuned on Twitter (@Nettitude_Labs, @benpturner, @m0rv4i) for the latest updates or join the PoshC2 slack channel by emailing labs at nettitude dot com.

Roadmap

There’s a lot planned for PoshC2 but the main upcoming features are detailed below.

Docker

The bad news is that support for any platform other than Debian flavours of Linux has been retired. While PoshC2 is written in Python3 and can be maintained to work across multiple platforms, we have instead elected to only support Debian-based distributions.  However, we are working to bring Docker support to PoshC2 to add the ability to run PoshC2 from a Docker container, allowing full and stable execution across any platform that supports Docker, including Windows and Mac OSX.

A docker branch has been created with a Dockerfile added in addition to a number of Docker commands that can be used to manage the containers, but this is still very much in an unstable format.

OpSec

One of the biggest concerns when running a red team engagement is operational security, and to that end we’re working on improving both the offensive side by making more of the inner workings of PoshC2 configurable, but also the reporting side by improving file upload tracking, hosts and users compromised and so on.

This will complement improvements to the HTML report and improve the OpSec and reporting side of things considerably.

Full changelist

The full changelist is below:

  • Added Harmj0y’s KeeThief to modules
  • Added RastaMouse’s Watson to modules
  • Added SafetyDump for minidumping in memory
  • Added file hashing when a file is uploaded
  • Rework imports to improve dependency management
  • Break up ImplantHandler into PSHandler.py, PyHandler.py and SharpHandler.py
  • Add ability to upload a file to an ADS
  • Update BloodHound
  • Pull out unpatched payloads into file for easy management
  • Add base64 encoded versions of the shellcode to the payloads directory
  • Add a configurable jitter to all implants
  • Update the notifications config if it is changed in the Config.py
  • Add NotificationsProjectName in Config.py which is displayed in notifications message
  • Add fpc script which searches the Posh DB for a particular command
  • Modify InjectShellcode logged command to remove base64 encoded shellcode and instead just log loaded filename
  • Add aliases for common sharp modules
  • Fix Shellcode_migrate payload creation
  • Start randomuris with a letter then proceed with random letters and numbers as e.g. msbuild errors if task name starts with a number
  • Fix issue with cred-popper and keylogger using same variable and conflicting
  • Add SCF files to the opsec command
  • Add posh commands on *nix for abstracting the use of pipenv and set up the env in the install script.
  • Move to python3 as python2 is EoL in 2020
  • Misc performance improvments, such as reduced cylomatic complexity and only processing the command once per input
  • Store creds in the DB, add ability to add creds/have them automatically parsed from mimikatz and add ability to specify use of a credId for some commands
  • Add create-shortcut command
  • Don’t show powershell one liner when domain fronting as it tries to connect directly
  • Added set-killdate command
  • Added posh-stop-service linux command
  • Updated Mimikatz
  • Added SafetyKatz
  • posh-config uses $EDITOR variable
  • New Sharp_Powershell_Runner payload compilation with mono
  • Added DotNet2JS Payload generation
  • Added get-computerinfo and get-dodgyprocesses to c# core
  • Misc small fixes
  • Updated help and readme
  • Add new prompt with intelligent autocompletions, autosuggestions and smart history
  • Log when a user logs on or logs off in the C2 server output
  • Add ability to broadcast messages in the C2 server output using the ‘message’ command
  • Add quit commands to Sharp and Python handlers
  • output-to-html renamed to generate-reports
  • Force setting of username for logging
  • Show Implant type at Implant prompt
  • Update User Agent string to match current Chrome
  • Added New SharpSocks
  • Addd * suffix for usernames for High Integrity processes
  • Added lateral movements to Sharp Implant (SMB/DCOM/WMI)
  • Add AMSI bypass for C# Implant
  • Updated PBIND hosts in opsec
  • Added invoke-mimikatz output from PBIND to be parsed
  • Updated PBIND to send stderror if the command does not work
  • Added remove-label for implants
  • Updated PSHandler to add DomainFrontURL to sharpsocks if in use
  • Updated RunAs-NetOnly
  • Added RunAs-NetOnly which uses SimpleImpersonation to create a token
  • Removed print statement on pbind-loadmodule
  • Updated pbind-command and pbind-module
  • Updated the pbind commands
  • Updated invoke-wmijspbindpayload
  • Added PBind payloads to PoshC2
  • Updated opsec error when username is None
  • Add output-to-html retired message
  • Add Matterpreter’s Shhmon
  • Updated ‘tasks’ command to add ImplantID
  • List PowerShell modules pretty like C# modules
  • Add new Sharp modules
  • Port the .NET AMSI Bypass to PowerShell
  • Updated Get-ScreenshotMulti to Continue if Screen is Locked
  • Correct Jitter time equation in PS implant
  • Print last commit and timestamp in header
  • Prompt improvements
  • Updated C2Server / SharpSocks Error responses
  • Updated HTML output
  • Update fpc.py to use virtualenv and only copy fpc to /usr/bin
  • Updated help
  • Expand on opsec no-nos
  • Update inject-shellcode help

Introducing PoshC2 v4.8 – includes C# dropper, task management and more! – Part One

We recently released version 4.8 of PoshC2, which includes a number of fixes and improvements that help facilitate simulated attacks. This is the first post in a series of posts that will include some of the details around the fixes and updates, alongside a number of other posts which will show some of the other cool features we have been working on in the background.

C Sharp (#)

As of PoshC2 version 4.6, a C# implant has been available. The main driver behind this implementation was to stay clear of System.Management.Automation.dll when an environment is heavily monitored and the EDR product can detect loaded modules inside a running process. Granted, not all EDR products are currently doing this, as it can create a hit on performance at the endpoint level, but its important to understand the OPSEC implications of running different C2 droppers.

This has been a work in progress since the release and is continually improving, and we believe this will be the way forward in months to come against advanced blue teams with a good detection and response capability across the organisation. Currently the implant is fully functional and allows an operator to load any C# assembly and execute this in the running process. This allows the user to extend the functionality massively because they’re able to load all the great modules out there in the wild, created by other infosec authors. The way this is loaded uses the System.Reflection namespace. The code can then be called using .NET reflection, which searches inside the current AppDomain for the assembly name and attempts to either run the entry point given or the main method of the executable. An example usage is as follows, for both run-exe and run-dll:

run-exe:

run-dll:

Task Management

One of the issues we’ve overcome in this release was around tracking tasks; there was no way to determine what output related to which issued command. This was largely due to the implant not using task ID’s that were tracked throughout the entire command process flow.

Typically, this was fine because you know what command you’re running, but when multiple people are working on the same instance, or if multiple similar commands are run, then it could be difficult to figure out what output came from which command. This also made tracking failed commands fairly difficult if not impossible to find. The following screenshots shows the output inside the C2Server and the CompletedTasks HTML file:

Figure 1: How commands were issued and returned against an implant

Figure 2: The old format of the tasks report

Furthermore, tasks were only logged in the database when the implant responded with some output. Now, tasks are inserted as soon as they are picked up by the implant with a start time, and updated with a completed time and the desired output when they return. This allows us to track tasks even if they kill the implant or error and never return, and to see how long they took. It also allows us to reference tasks by ID, allowing us to match them in the C2Server log and to only refer to the task by its ID in the response, decreasing message length and improving operational security. An example of the output is shown below:

Figure 3: The new task logging

The generated report then looks like this:

Figure 4: The new report format

User Logging

The astute amongst you will have noticed the new User column in the report above. Another improvement that has been made in relation to tracking tasks is user logging. Now when you start the ImplantHandler you are prompted for a username; it is possible to leave this blank if required, but when PoshC2 is being used as a centralised C2Server with multiple users it’s important to track which user ran which task as shown in the examples below:

Figure 5: You are now prompted for a username when you start the ImplantHandler

All tasks issued from that ImplantHandler instance will be logged as that user, both in the C2Server log and in the report.

Figure 6: If a username is set it is logged in the task output

Figure 7: The username is also logged for the task in the report

For scripting and/or ease of use, the ImplantHandler can also be started with the -u or --user option, which sets the username, avoiding the prompt:

python ImplantHandler.py --user "bobby b"

Beacon Timing

The way beacon sleep times were handled was inconsistent amongst implants, so now we’ve standardised it. All beacon times must now be in the format of value and unit, such as 5m, 10s or 2h. This is then displayed as such for all implant types in the ImplantHandler. As seen below, the fourth column states the current beacon time in seconds, whereas now we show only the output in the newer format.

Figure 8: The old beacon time format

Figure 9: The new beacon time format

Validation has also been added for these, so attempting to set an invalid beacon time will print a suitable error message and do nothing.

Figure 10: The validation message if an invalid format is set

We’ve also changed the implant colour coding so that they are only flagged as timing out if they haven’t checked in for a multiple of their beacon time, as opposed to a hard coded value.

Previously the implants would be coloured as yellow if they hadn’t checked in for 10 minutes or more, and red for 60 minutes or more. Now they are coloured yellow if they have not checked in for 3x beacon time, and red for 10x beacon time, granting far more accurate and timely feedback to the operator.

Figure 11: Implant colour coding has been improved so that the colour is dependent on the beacon time

C2Viewer

The C2Viewer was a legacy script used to just print the C2Server log, useful when multiple people want to be able to view and manipulate the output independently.

There were a few issues with the implementation however, and there was a possibility that it would miss output as it polled the database. Additionally, as this was an additional script, it added maintenance headaches for updates to task output.

This file has now been removed, and instead if you want to view the output in the same way, we recommend that you run the C2Server and pipe it to a log file. You can print the log to stdout and a log file using tee:

python -u C2Server.py | tee -a /var/log/poshc2_server.log

This output can then be viewed and manipulated by anyone, such as by using tail:

tail -f -n 50 /var/log/poshc2_server.log

This method has the added benefit of storing all server output. While all relevant data is stored in the database, having a backup of the output actually seen in the log during usage can be extremely useful.

Further details can be found in the README.md.

Internal Refactoring

We’re also making strides to improve the internals for PoshC2, refactoring files for clarity, and cutting cyclic dependencies. We aim to modularise the entire code base in order to make it more accessible and easier to maintain, including making changes, but as this is a sizeable change we’ll be doing it incrementally to limit the impact.

Conclusion

There have been quite a few changes made, and we’re aiming to not only improve the technical capabilities of PoshC2, but also the usability and maintainability.

Naturally, any changes come with a risk of breaking things no matter how thorough the testing, so please report any issues found on the GitHub page at: https://github.com/nettitude/PoshC2.

The full list of changes is below, but as always keep an eye out on the changelog as we update this with any changes for each version to make tracking easier. This is the first blog of a series of blogs on some additional features and capability within PoshC2. Stay tuned for more information.

  • Insert tasks when first picked up by the implant with start time
  • Update task when response returned with output and completed time
  • Log task ID in task sent/received
  • Add ability to set username and associate username to tasks issued
  • Print user in task information when the username is not empty
  • Improved error handling and logging
  • Rename CompletedTasks table to Tasks table
  • Method name refactoring around above changes
  • Pull out implant cores into Implant-Core.py/.cs/.ps1
  • Rename 2nd stage cores into Stage2-Core.py/.ps1
  • Stage2-Core.ps1 (previously Implant-Core.ps1 ) is no longer flagged by AMSI
  • Use prepared statements in the DB
  • Refactoring work to start to break up dependency cycle
  • Rename DB to Database in Config.py to avoid name clashes
  • Pull some dependency-less functions into Utils.py to aid dependency management
  • Fix download-file so that if the same file is downloaded multiple times it gets downloaded to name-1.ext name-2.ext etc
  • Adjust user/host printing to always be domain\username @ hostname in implants & logs
  • Fix CreateRawBase payload creation, used in gzip powershell stager and commands like get-system
  • Added ImplantID to Tasks table as a foreign key, so it’s logged in the Tasks report
  • Added Testing.md for testing checklist/methodology
  • Fix Get-ScreenshotAllWindows to return correct file extension
  • Fix searchhelp for commands with caps
  • Implant timeout highlighting is now based on beacon time – yellow if it’s not checked in for 3x beacon time and red if not checked in for 10x beacon time
  • Setting and viewing beacon time is now consistent across config and implant types – always 50s/10m/1h format
  • Added validation for beacon time that it matches the correct format
  • Fix StartAnotherImplant command for python implant
  • Rename RandomURI column in html output to Context, and print it as domain\username @ hostname
  • Move service instructions to readme so that poshc2.service can just be copied to /lib/systemd/system
  • Removed C2Viewer.py and added instructions for same functionality to readme just using system commands